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Here we provide more implementation details and exper-
imental results. We encourage the reader to view the video
results included in the supplementary materials for an intu-
itive experience of editable free-view human performance.

A. Network Architectures
A.1. Volume Generator

We utilize the volume generator to construct UV vol-
umes, which is presented in Figure 1. We take the hu-
man pose as input to the SMPL model and animate human
point clouds in different poses. Then we follow the previ-
ous work [6] to anchor a set of time-invariant latent codes to
the posed human point cloud and voxelize the point cloud.
We follow the network architecture of [6] to model the 3D
sparse CNN, and reduce the channels from 352 to 64, since
the UV volumes only capture low-frequency semantic in-
formation.

A.2. Density, IUV and Color Network

We present architectures of density network Mσ , IUV
network Muv and color network Mc in Figure 2, Figure 3
and Figure 5, respectively.

A.3. Texture Generator

Figure 4 shows the architecture of convolutional tex-
ture generator network G. For each human body part of
{i}24i=1, the texture generator generates a corresponding
neural texture stack of {Ei}24i=1. To predict the specific pose-
dependent Ei, we concatenate human pose vector θ with a
one-hot body part label vector ki as input to the texture gen-
erator. We forward propagate the generator networkG once
to predict all the 24 neural textures with a batch size of 24.
The CNN-based module is developed to extract the local
relation of neural texture stack with respect to the human
pose. The output spatial neural texture stacks (NTS) will be
used for UV unwrapping subsequently.

*Authors contributed equally to this work.
†Corresponding Author.
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Figure 1. Architecture of the volume generator. It takes hu-
man pose θ as input, drives the point clouds parameterized by the
SMPL model under the control of θ, and generates the UV vol-
umes using a 3D sparse CNN to encode a set of latent codes z
anchored on the posed point clouds.
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Figure 2. Architecture of the density network. The network takes
the feature vector f(x, z, θ) at point x interpolated by the gener-
ated UV volumes and outputs density σ(x) using ReLU activation.
The shallow density MLP Mσ consists of 2 fully-connected layers
with 64 channels.
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Figure 3. Architecture of the IUV network. The network takes
the rendered UV feature vector F(r) at camera ray r and out-

puts view-invariant texture coordinates
(
P̂(r), Û(r), V̂(r)

)
using

sigmoid activation. The IUV MLP Muv is modeled by 4 fully-
connected layers of 256 channels.
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Figure 4. Convolutional texture generator network G consists of 5 convolution layers to get the neural texture stack Ei with 128 dimensions.

256 256 256 256 256 128

Figure 5. Architecture of the color network. The network takes
positional encoding of texture coordinates γ(Ûk(r), V̂k(r)) along
with the sampled texture embeddings at locations (Ûk(r), V̂k(r))
and a one-hot part label vector k. The color MLP Mc is mod-
eled by 5 fully-connected layers of 256 channels, including a skip
connection that concatenates inputs to the fourth layer’s activation.
The feature vector of the fifth layer is processed by an additional
layer with 128 channels, along with positional encoding of input
viewing direction γ(d). A final layer with a sigmoid activation
outputs view-dependent RGB color Ĉk(r) of body part k.

B. Additional Implementation Details
We set λvgg to 5× 10−2 and λs to 1× 10−1. The λp and

λuv are exponential annealing from 1× 10−1 and 1× 10−0

to 1× 10−3 and 5× 10−2 with k = 4× 10−2:

λp = max(1× 10−1e−k·epoch, 1× 10−3)

λuv = max(1× 10−0e−k·epoch, 5× 10−2)
(1)

As shown in Figure 6a, the weight of UV-metric is large
at the beginning because UV volumes require a warm-start
to satisfy the UV unwrap defined by DensePose [2], and
then drop rapidly within 100 epochs because DensePose
outputs are not accurate. After 100 epochs, UV-metric be-
comes a regular term used to constrain the solution space of
UV volumes.

UV volumes should be learned primarily in the early
stages of training, because The NTS makes sense only af-
ter the UV volumes warm-start and a coarse geometry is
constructed. Conversely, later in training, we optimize
NTS to fit high-frequency signals rather than UV coordi-
nates. Therefore, we use two optimization strategies to
train the UV volumes and NTS branch. Their learning rates

(a) Weight of warm-start loss. (b) Learning rate.

Figure 6. (a) The blue represents the weight of semantic loss λp

and the orange represents the weight of UV-metric loss Luv. (b)
The orange represents the learning rate of the UV volumes branch
and the blue represents the learning rate of the NTS branch.

start from 1 × 10−3 and 5 × 10−4 with a decay rate of
γ = 1× 10−1, respectively, and decay exponentially along
the optimization, as shown in Figure 6b.

lnts = 5× 10−4γ
epoch
1000

luv = 1× 10−3γ
epoch
250

(2)

In our experiments, we sample camera rays all over an
entire image and 64 points along each ray between near and
far bounds. The scene bounds are estimated based on the
SMPL model. We adopt the Adam optimizer [3] for training
our model. We conduct the training on a single NVIDIA
A100 GPU. The training on 26-view videos of 100 frames at
960× 540 resolution typically takes around 200k iterations
to converge (about 20 hours).

C. Additional Baseline Method Details
DyNeRF (DN) [4]. We reimplement DN by following the
procedure in their paper to train the model on video se-
quences of a moving human.
Neural Body (NB) [6]. We use the NB code open-sourced
by the authors at https://github.com/zju3dv/neuralbody and
follow their procedure for training on video sequences of a
moving human.
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Animatable NeRF (AN) [5]. We use the
AN code open-sourced by the authors at
https://github.com/zju3dv/animatable and follow their
procedure for training on video sequences of a moving
human.

D. Additional Ablation Studies

We conduct ablation studies on performer p1 of CMU
dataset. As shown in Table 1, Table 2, Table 3, Figure 10,
Figure 11, and Figure 12, we analyze the effects of different
losses for our proposed approach, different types of NTS,
different resolutions of NTS, different methods to model the
view-dependent color, and different experimental settings
of video frames and input views.

D.1. Effects of Different Losses

Impact of warm-start loss. No Warm-start Loss (w/o Luv)
is an ablation built upon our full model by eliminating the
warm-start loss. As shown in Figure 10 and Figure 11,
w/o Luv suffers from ambiguity, like the belt on the pants
and meaningless texture. This comparison indicates that the
warm-start loss yields better information reuse of different
frames by transforming the observation XYZ coordinates to
canonical UV coordinates defined by the consistent seman-
tic and UV-metric loss.
Impact of perceptual loss. No Perceptual Loss (w/o Lvgg)
is an ablation that uses the same model but training without
the perceptual loss. As shown in Figure 10 and Figure 11,
w/o Lvgg suffers from blur, like the number 9 on the shirt
and distorted number 9 on the texture. This comparison
illustrates that perceptual loss can improve the visual quality
of synthesized images by supervising the structure of the
renderings from local to global during training.
Impact of silhouette loss. No Silhouette Loss (w/o Ls) is
an ablation built upon our full model by eliminating the sil-
houette loss. As shown in Figure 10, w/o Ls suffers from
artifacts around the performance because there is no the
warm-start supervision of semantic and UV-metric labels
around the boundary. This comparison demonstrates that
silhouette loss is essential for us to model fine-grained ge-
ometry.

D.2. Neural Texture Stacks

We performed two ablations: 1) different types of NTS;
2) NTS at different resolutions to illuminate the design de-
cisions for the proposed Neural Texture Stacks.
Different Types of NTS. We evaluate our proposed CNN-
based Spatial NTS against three ablations: Global NTS,
Local NTS, and Hyper NTS. Global NTS (in Figure 7) is
built upon our full model by replacing local texture em-
bedding ek(r) with global pose θ. Local NTS (in Figure
8) transforms observation UV coordinates (Ûk

t (r), V̂k
t (r))
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Figure 7. The Global-NTS model directly takes a pose θ as a
condition to generate the color. Its architecture is similar to our
color MLP Mc (in Figure 5) except for replaces texture embed-
ding ek(r) with pose θ.
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Figure 8. The Local-NTS model transforms UV coordinates
(Ûk

t (r), V̂k
t (r)) to (Ûk

t ′(r), V̂k
t ′(r)) using a deformation field con-

ditioned on pose θ and modeled by three fully-connected layers of
256 channels. Then we use the transformed UV coordinates, part
label vector k and viewing direction d as inputs to the subsequent
MLP modeled by five fully-connected layers of 256 channels and
one fully-connected layer of 128.
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Figure 9. The Hyper-NTS model adds an ambient MLP to the
local-NTS model to parameterize the deformation field, which
yields warped UV coordinates (Ûk

t ′(r), V̂k
t ′(r)) and a coordinate

w in the ambient space. Both outputs, part label vector k and
viewing direction d, are concatenated to the subsequent MLP to
produce view-dependent colors. The ambient MLP has the same
architecture as the deformation MLP.

to canonical UV coordinates (Ûk
t ′(r), V̂k

t ′(r)) using a de-
formation field. Hyper NTS (in Figure 9) adds an ambi-
ent MLP to the local-NTS model to model a slicing surface
in hyperspace, which yields a coordinate w in an ambient
space.

Table 1 shows the quantitative results on different types
of NTS (i.e., global, local, hyper and spatial). It can be
seen that the local-NTS model has the worst performance,
which is the most limited among these methods. Local NTS
only allows coordinate transformation but cannot generate
new topological space, which is totally incapable of model-
ing the topologically varying texture given different poses.
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OursGlobal-NTS Local-NTS Hyper-NTS SH2 w/o Noise w/o Ma w/o VGG w/o IUV Ground-truth

Figure 10. Renderings of our model against ablations.

Type Novel View Synthesis Novel Pose Generation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Global NTS 29.86 0.966 0.062 26.18 0.927 0.074
Local NTS 29.82 0.965 0.061 26.15 0.926 0.074
Hyper NTS 30.08 0.966 0.059 26.19 0.927 0.073
Spatial NTS 30.38 0.966 0.036 26.20 0.927 0.073

Table 1. Effects of different types of NTS on our model.

As shown in Figure 10, it fails to reconstruct the belt on
the pants due to the topological variation ((the belt appears
when the performer raises his hand and disappears when he
puts his hand down because the shirt covers it).

Since the texture of Global-NTS directly condition on
global pose without restriction, it is easy for Global-NTS
to generate a new topological space, as shown in Figure
10, Global-NTS successfully reconstructs the belt on the
pants. However, the method that globally models the tex-
ture variation is hard to reuse the information of different
observation spaces, which leads to ambiguous textures. As
shown in Figure 10, the outline of the number 9 on the shirt
is not clear and even connected, making it look like an 8.
The ambiguous textures are shown in Figure 11, where the
number looks more like a red stain. Lack of local map-
ping makes a relatively poor performance of Global-NTS
as demonstrated in Table 1.

Hyper-NTS can model local texture changes by coordi-
nate transformation and generate new topological spaces si-
multaneously, so it performs better than Global-NTS and
Local-NTS. However, it is a thorny issue to tune the dimen-
sion of coordinate w. If the dimension of the coordinates w
is too high, Hyper-NTS works as Global-NTS, while func-
tioning as Local-NTS if too low.

In contrast, as shown in Table 1, our CNN-based Spa-
tial NTS outperforms all other NTS, which benefits from
the nature of convolution operation capturing local 2D tex-
ture changes. At the same time, the MLP only needs to
model the local mapping between the neural texture stack
and RGB color.

As demonstrated in Figure 10 and Figure 11, our CNN-
based Spatial NTS can accurately capture high-frequency
details like numbers or wrinkles on shirts, glasses, and a
belt on pants.
NTS at Different Resolutions. As shown in Figure 4, we
generate an NTS at a resolution of 64 × 64. Choosing the
resolution of NTS provides a trade-off between quality and
memory. We analyze the impacts of resolution in Figure 12,
where we report test quality vs. resolution for the dataset of
CMU-p2 on PSNR, SSIM and LPIPS metrics. Restricted
to memory limitations, NTS has a maximum resolution of
128. It can be observed that the larger resolution of NTS,
the better the model performed on novel view synthesis and
the novel pose generalization tasks. In this analysis, we
found 64 × 64 to be a favorable optimum in our applica-
tions, where NTS at 128×128 resolution is not much better
than at 64×64 resolution but costs more memory and time,
so we choose 64 × 64 resolution in all other experiments
and recommend it as the default to practitioners.

D.3. View-dependent Color

Ray Direction Noise. To model view-dependent RGB
color of human performances, we apply positional encoding
γ(·) [7] to the viewing direction, and pass the encoded view-
ing direction, UV map and the sampled texture embedding
into the color network Mc to decode the view-dependent
color Ĉk(r) of camera ray r.
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OursGlobal-NTS Local-NTS Hyper-NTS SH2 w/o Noise w/o VGG w/o IUVw/o Ma

Figure 11. Textures of our model against ablations.

(a) Novel view synthesis

(b) Novel pose generalization

Figure 12. Impacts of NTS at different resolutions.

Since the UV map is generated in a learning-based fash-
ion rather than using direct sampling locations, the color
network tends to overfit training viewing directions directly
sampled during training. To improve the generalisability
of the color network, we apply a sub-pixel noise to the ray

direction. Here, instead of shooting in the pixel centers, a
noise ψ is used as follows:

xi = o+ ti(d+ ψ), (3)

where noise ψ can be interpreted as a locality condition,
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Type Novel view synthesis Novel pose generation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SH1 29.41 0.966 0.052 26.00 0.926 0.078
SH2 30.02 0.966 0.051 26.15 0.927 0.076
SH3 29.43 0.965 0.051 26.14 0.926 0.075
SH4 27.83 0.962 0.054 26.10 0.926 0.076

w/o noise 28.56 0.962 0.058 25.90 0.924 0.078
Ours 30.38 0.966 0.036 26.20 0.927 0.073

Table 2. Comparison of different methods to model view-
dependent RGB color.

i.e., in similar view conditions, RGB color should not be too
different. It allows the model to learn smoother transitions
between different views.

The ablation of ours w/o noise is presented in Table 2 and
demonstrates the effectiveness of the proposed ray direction
noise. Figure 10 and Figure 11 show qualitative results of
ours w/o noise tests on the novel views. Obviously, ours w/o
noise tends to exhibit artifacts in the rendering and textures.
Spherical Harmonic Functions. Another way to recon-
struct the view-dependent color of human performance is
using the spherical harmonic (SH) functions. We pass the
encoded UV map with the sampled texture embedding into
the color network Mc to decode spherical harmonic coeffi-
cients η for each color channel:

(η̂0k(r), η̂
1
k(r), · · · ,η̂nk (r)) = (4)

Mc

(
γ(Ûk(r), V̂k(r)), ek(r),k

)
,

where spherical harmonics (η0, η1, · · · , ηn) form an or-
thogonal basis for functions defined over the sphere, with
zero degree harmonics η0 encoding diffuse color and higher
degree harmonics encoding specular effects. The view-
dependent color Ĉk(r) of camera ray r can be determined
by querying the specular spherical functions SH at desired
viewing direction d:

Ĉk(r) = S

(
η̂0k(r)

2

√
1

π
+

n∑
m=1

SHm(η̂mk (r),d)

)
, (5)

where S is the sigmoid function for normalizing the colors.
A higher degree of harmonics results in a higher capa-

bility to model high-frequency color but is more prone to
overfit the training viewing direction.

The ablation of different harmonics degrees is presented
in Table 2, which demonstrates that the harmonics degree
of 2 model achieves the best performance among all the
SH models but still cannot reach the performance of ours.
Figure 10 illustrates the qualitative results of SH2 tests on
the novel views, which shows that SH2 suffers from global
color shifts (head of the performer) and artifacts (the belt on
pants), while ours does not.

Task 4 Views 20 Views
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

60 Frames 29.56 0.967 0.045 31.12 0.975 0.038
300 Frames 29.23 0.963 0.048 29.90 0.968 0.046
600 Frames 29.37 0.964 0.049 29.50 0.966 0.048

1200 Frames 28.96 0.961 0.052 29.26 0.963 0.053

Table 3. Ablation study on the number of training frames and
views.

D.4. Video Frames and Input Views

To analyze the impacts of the number of camera views
and video length, we show the results of our models trained
with different numbers of camera views and video frames
in Table 3. We conduct the experiments on performer 313
of ZJU dataset. All the results are evaluated on the rest two
views of the first 60-frame video. The results show that
although the number of training views improves the perfor-
mance on novel view synthesis, sparse four views are good
enough for our model to reconstruct dynamic human per-
formances. In addition, the ablation study of frame numbers
indicates that training on too many frames may decrease the
performance as the network cannot fit such a long video,
which is also mentioned in NeuralBody [6].

E. Additional Results
E.1. Novel View Synthesis

For comparison, we synthesize images of training poses
in hold-out test-set views. More qualitative results of novel
view synthesis are shown in Figure 13, Figure 14 and Figure
15. Our method produces photo-realistic images with sharp
details, particularly letters on clothes (in Figure 13), stripes
on T-shirts, and wrinkles in clothes (in Figure 14), which
benefits from our proposed Spatial NTS that encodes high-
frequency appearance information.

Figure 15 shows the results of comparisons on ZJU Mo-
cap and H36M dataset, which are trained on sparse-views
video sequences. Here, we use four training views on ZJU
Mocap dataset and three for the most challenging H36M
dataset. Our model obviously performs much better in de-
tails and sharpness than all other baselines. Furthermore,
DyNeRF fails to render plausible results with sparse train-
ing views because taking time-varying latent codes as the
conditions are hard to reuse information among frames.

E.2. Novel View Synthesis of Dynamic Humans

We present more results on novel view synthesis of dy-
namic humans in Figure 16. As presented, our model can
handle a dynamic human with rich textures and challenging
motions, and preserve sharp image details like letters and
wrinkles, while keeping inter-view and inter-frame consis-
tency. Note that the last row is the result of our model on
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Ground-truthDyNeRF NeuralBody OursAnimatable-NeRF

Figure 13. Comparisons on test-set views for performers from CMU Panoptic dataset with 960×540 images. Our model generates photo-
realistic appearance images even with rich textures, particularly letters on the performers’ clothes. By contrast, baselines give blurry results
while missing a lot of high-frequency details. Here, we present results on two different test views at the same time for each performer.

the H36M dataset, demonstrating that our model can still
recover high-fidelity free-view videos under sparse training
views.

In addition, we show the intermediate UV images and fi-
nal RGB images rendered by our model varying with views
and human poses in Figure 17, which demonstrates that our
model can synthesize photo-realistic view-consistent RGB
images that condition on view-consistent UV images ren-
dered by UV volumes.

E.3. Novel Pose Generalization

More qualitative results of novel pose generalization are
shown in Figure 18 and Figure 19, where the latter are the
results of comparisons on H36M dataset where only three
cameras are available for training.

E.4. Reshaping

By changing the SMPL parameters, we can conveniently
deform the human performer. We present the performer

whose size is getting smaller and the shoulder-to-waist ratio
is getting smaller from left to right in Figure 20. With the
help of view-consistent UV coordinates generated by UV
volumes, our model still renders view-consistent images
with challenging shape parameters. These rendered im-
ages maintain highly appearance consistency across chang-
ing shapes thanks to the neural texture stacks.

E.5. Visualization of NTS

In contrast to [6] learning a radiance filed in the 3D vol-
umes, we decompose a 3D dynamic human into 3D UV vol-
umes and 2D neural texture stacks, as illustrated in Figure
21. The disentanglement of appearance from geometry en-
ables us to achieve real-time rendering of free-view human
performance. We learn a view-consistent UV field to trans-
fer neural texture embeddings to colors, which guarantees
view-consistent human performance. Details like the folds
of clothing vary from motion to motion, as does the topol-
ogy, so we require a dynamic texture representation. Refer-
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Figure 14. Comparisons on test-set views for performers from ZJU Mocap dataset. Our model obviously perform well in details (e.g.,
stripes on T-shirts and wrinkles in clothes) and sharpness than all other baselines, which benefits from our proposed Spatial NTS that
encodes high-frequency appearance information. Other methods give plausible but blurry and rough synthesized images. Here, we present
results on two different test views at the same time for each performer.

ring to Figure 22, we visualize the pose-driven neural tex-
ture stacks to describe appearance at different times, which
enables us to handle dynamic 3D reconstruction tasks and
to generalize our model to unseen poses. It is obvious that
our learned NTS preserve rich textures and high-frequency
details varying from different poses.

E.6. Retexturing

With the learned dense correspondence of 3D UV vol-
umes and 2D neural texture stacks, we can edit perform-
ers’ 3D cloth by user-provided 2D textures. As shown in
Figure 23, given arbitrary artistic paintings, we can produce
cool stylized dynamic humans leveraging stylizations trans-
ferred from the original texture stacks by the network [1].
Visually inspected, the new texture is well painted onto the
performer’s T-shirt under different poses at different view-
ing directions. Besides, we perform some interesting ap-

plications of our model in Figure 24 and Figure 25, which
include a 3D virtual try-on implemented by replacing orig-
inal texture stacks with a user-provided appearance. The
visualization results demonstrate that our model can conve-
niently edit textures preserving the rich appearance and var-
ious styles, which benefits from our proposed Neural Tex-
ture Stacks, and can render retextured human performance
with view consistency well using 3D UV volumes.
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Figure 15. Comparisons on test-set views from the ZJU Mocap dataset with four training views and the most challenging H36M dataset
with only three available views for training. Our model generates high-definition results even with rich textures and challenging motions.
DyNeRF fails to render plausible results with sparse training views because taking time-varying latent codes as the conditions are hard to
reuse information among frames.
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Figure 16. The rendering of our method on different sequences. Our model can handle a dynamic human with rich textures and challenging
motions preserving sharp image details like letters and wrinkles, which benefits from our proposed Spatial NTS that encodes high-frequency
appearance information, while keeping inter-view and inter-frame consistency, which benefits from our proposed UV Volumes. Note that
the last row is the result of our model on the H36M dataset, which demonstrates that our model can still recover high-fidelity free-view
videos under sparse training views.
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Figure 18. Comparisons on test-set poses for performers from CMU Panoptic and ZJU Mocap dataset.
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Figure 19. Comparisons on test-set poses for performers from the most challenging H36M dataset.
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Figure 20. Novel view synthesis results of reshaping. By changing the SMPL parameters, we can conveniently deform the human
performer. We present the performer whose size is getting smaller and the shoulder-to-waist ratio is getting smaller from left to right. With
the help of view-consistent UV coordinates encoded by UV volumes, our model still renders view-consistent images with challenging
shape parameters. Here, The horizontal axis shows shape changes and the vertical axis shows view changes. All results are rendered from
novel views.
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(a) Dynamic Human (b) 3D UV Volumes (c) 2D Neural Texture Stacks

Figure 21. We decompose (a) the dynamic human into (b) 3D UV volumes and (c) 2D neural texture stacks. The disentanglement of
appearance from geometry enables us to achieve real-time rendering of free-view human performance. We show performers and their UV
avatars with four different poses at four different viewing directions from CMU Panoptic, ZJU-Mocap and H36M datasets. Their neural
texture stacks that preserve human appearance with high-frequency details under one of these poses are visualized in the last column. Our
method takes smooth UV coordinates to sample neural texture stacks for corresponding RGB value.
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Pose 1 Pose 2 Pose 3 Pose 4

Figure 22. Visualization of neural texture stacks under different poses. Details like the folds of clothing vary from motion to motion, as
does the topology. Therefore, we propose pose-driven neural texture stacks to describe textures at different times, which enables us to
handle dynamic 3D reconstruction tasks and to generalize our model to unseen poses.
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Style StyleRetextured 3D human Retextured 3D human

Figure 23. Our model supports rendering a stylized dynamic human with arbitrary artistic painting, which can be applied in controllable
3D style transfer with multi-view consistency.
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Appearance AppearanceRetextured 3D human Retextured 3D human

Figure 24. Our model allows us to generate free-view human performance with a user-provided cloth texture image, which enables some
interesting applications such as real-time 3D virtual try-on. We collect these appearance images from the Internet.
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Retextured 3D human AppearanceAppearance Retextured 3D human

Figure 25. Our model allows us to generate free-view human performance with a user-provided cloth texture image, which enables some
interesting applications such as real-time 3D virtual try-on. We collect these appearance images from the Internet.
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