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HUMAN3R: EVERYONE EVERYWHERE ALL AT ONCE
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Online Human-Scene Reconstruction

Figure 1: Given a stream of RGB images as input, Human3R enables human-scene reconstruction in an online, continuous manner, estimating
global multi-person meshes, camera parameters, and dense scene geometry with each incoming frame in real time.

ABSTRACT

We present Human3R, a unified, feed-forward framework for online 4D human-
scene reconstruction, in the world frame, from casually captured monocular videos.
Unlike previous approaches that rely on multi-stage pipelines, iterative contact-
aware refinement between humans and scenes, and heavy dependencies, e.g.,
human detection, depth estimation, and SLAM pre-processing, Human3R jointly
recovers global multi-person SMPL-X bodies (“everyone”), dense 3D scene (“ev-
erywhere”), and camera trajectories in a single forward pass (“all-at-once”).
Our method builds upon the 4D online reconstruction model CUT3R, and uses
parameter-efficient visual prompt tuning, to strive to preserve CUT3R’s rich spa-
tiotemporal priors, while enabling direct readout of multiple SMPL-X bodies.
Human3R is a unified model that eliminates heavy dependencies and iterative
refinement. After being trained on the relatively small-scale synthetic dataset
BEDLAM for just one day on one GPU, it achieves superior performance with
remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along
with 3D scenes, in one stage, in real-time (15 FPS) with a low memory footprint (8
GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or
competitive performance across tasks, including global human motion estimation,
local human mesh recovery, video depth estimation, and camera pose estimation,
with a single unified model. We hope that Human3R will serve as a simple yet
strong baseline, which can be easily adapted for downstream applications. Code
available in fanegg.github.io/Human3R.

1 INTRODUCTION

Humans do not exist in isolation but constantly move in, interact with, and manipulate the world
around us. Thus, understanding human behaviors requires putting them within a 3D world context,
ideally in an online manner, as indicated in Fig. 2. In the field of 3D vision, this necessitates the 3D
reconstruction of both global human motions and the surrounding scene from visual data [30],
which is challenging, but fundamental for various downstream applications, including AR/VR,
autonomous navigation, humanoid policy learning, and human-scene interaction.

Prior global human motion estimators typically follow one of two strategies: 1) directly estimating
the global human motions aided with learned motion priors [72, 110]; 2) transforming human motion
to world coordinates with SLAM-based [91] estimated global camera [44, 48, 80, 82, 89, 99, 109].
Considering the surrounding 3D scene, which is crucial for contextualizing human actions, recent
advances attempt to jointly reconstruct 3D humans, scene, and cameras, either from multi-view
images [16, 56, 74] or monocular videos [53].
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However, these methods have two main limitations:
1) Multi-stage/model/shot: They [53, 56] recon-
struct the scene and humans separately, then jointly
refine them under contact constraints. The en-
tire pipeline takes hours. In addition, a top-down
multi-person mesh regressor is used, which requires
off-the-shelf human detection and human tracking
models [15, 41, 50, 71, 73, 106] to crop and associate (a) w/o vs. w/ scene context (b) Raw capture
each person before feeding into the single-person L )

. Figure 2: Human behaviors (i.e., grocery shopping) become

mesh regressor [31,99], thus the inference Speed CON-  ¢learer when viewed within their surrounding environment.
siderably drops for images with multiple people.
2) Heavy dependencies: Apart from the modules mentioned above, numerous off-the-shelf de-
pendencies are needed to preprocess the input images, including but not limited to metric depth
estimators [4], generic 3D reconstruction models [24, 46, 91, 98] to obtain the 3D scene pointcloud,
camera pose and intrinsics. Both limitations hinder real-time online inference, end-to-end learning,
effortless deployment, and scalability to long sequences. We seek a unified one-stop solution.

We introduce Human3R, an all-at-once model for 4D human-scene reconstruction. The term “all-at-
once” reflects several key aspects: 1) One Model: A unified model jointly reasons about humans,
scene, and camera, rather than relying on separate off-the-shelf models for each component. 2) One
Stage: In contrast to prior work with iterative refinement, our method runs in an online fashion,
operates on streaming video at real-time speed (15 FPS) without compromising accuracy. 3) One
Shot: With a bottom-up multi-person SMPL-X regressor, our model can reconstruct multiple persons
in a single forward pass. 4) One GPU, One Day: Our model is parameter efficient, requiring only
one day of training on a single NVIDIA 48GB GPU, still yielding state-of-the-art performance.

The main challenge in building such a unified model lies in the lack of large-scale video datasets with
reliable annotations of global human motion, 3D scene, and camera pose. Existing real datasets [21,
33, 39, 94] are limited in scale, while synthetic ones, like BEDLAM [5], are limited in scene
variations. Our key idea is to leverage the strong spatiotemporal priors [13, 27, 108] learned by
a 4D reconstruction foundation model [97], and extend it through minimal tuning on a relatively
small-scale human-scene dataset, achieving both data and parameter efficiency. This approach enables
us to advance from point-only reconstruction to the joint reconstruction of dense scene point clouds
and sequential SMPL-X body meshes [64] for multiple individuals in the scene.

Specifically, we build upon CUT3R [97], a recurrent 4D reconstruction foundation model for online
metric-scale reconstruction, which maintains a persistent internal state that encodes everywhere and
everyone, and incrementally updates it with new observations. We finetune CUT3R via visual prompt
tuning (VPT) [35], with minimal learnable parameters prepended into the input space while the entire
CUT3R backbone is kept frozen. BEDLAM [5] serves as our training data, which is small-scale yet
high-quality, with 6k sequences featuring 3D scene depth, camera poses, and SMPL-X meshes of
multiple persons in the world coordinates. Instead of naively prepending random initialized learnable
tokens as visual prompts [35], we detect the human head tokens from CUT3R’s image feature,
complement it with human prior tokens [3] learned from human-specific datasets, and project them to
human prompts using a learnable MLP, as shown in Fig. 4.

Our proposed human prompts are highly informative, as the head is the most discriminative keypoint
on human bodies [3, 116]. As anchors (i.e., SMPL-X queries), these human prompts provide strong
spatial priors for localizing and reconstructing the full human body. They self-attend to image tokens
for spatial whole-body information aggregation, and cross-attend to the persistent internal state to
make 3D human estimates scene-aware. Remarkably, Fig. 8 shows that the 3D scene reconstruction
is also improved after finetuning for human reconstruction, demonstrating the mutual benefits of joint
reasoning about humans and scene.

Simple yet effective, Human3R leverages the spatial and temporal priors learned by CUT3R to
reason about humans, scene, and camera in a unified framework, efficiently processes long sequences
with linear computational complexity (8§ GB GPU memory footprint, 15 FPS inference speed), and
supports scalable sequence length (thousands of frames) beyond training length (4 frames) by simply
rolling out the state. Across various 4D tasks — including video depth estimation, camera pose
estimation, human mesh recovery, and global human motion estimation — our method achieves
superior performance over task-specific baselines while offering a unified and real-time solution.



Preprint

2 RELATED WORKS

Local Human Mesh Recovery. Previous works on human mesh recovery (HMR) primarily focus
on estimating the pose and shape parameters of a parametric body model, like SMPL [54], SMPL-
X [64], and GHUM [105], in the camera frame. Early optimization-based methods fit SMPL model
to IMU trajectories [94, 103] or to 2D landmarks by minimizing reprojection errors [6, 65]. In
contrast, learning-based approaches, trained on large-scale image-body pairs, can regress SMPL
parameters from images [37, 59] in a single pass. Progress in this field spans improvements in
network architectures [25, 31, 52, 111], training and testing paradigms [19, 45, 76], kinematics
designs [47, 49], camera models [43, 62], datasets [5, 25, 29, 36, 63], expressive body models [18, 28,
49, 64, 112], temporal consistency [17, 38, 42], and etc. For multi-person scenarios, most prior works
adopt a top-down multi-stage approach: detect and crop each person before running single-person
HMR. This is computationally expensive, scales poorly with more people, and often fails in crowded
scenes due to occlusion and truncation. To overcome this, bottom-up methods [3, 87, 88, 100] recover
multiple human meshes from a full image in one-shot scheme. Multi-HMR, for example, finetunes
DINOV2 [60] on synthetic datasets [5, 63], and achieves strong performance. Our goal is even more
ambitious: to reconstruct both the 3D scene and multiple humans in the world frame from monocular
videos, using one unified model, in one forward pass, and in real-time.

Global Human Motion Estimation. Reconstructing
world-grounded humans from long video sequences
is an ill-posed problem, typically requiring additional
priors or constraints. GLAMR [110] leverages the
learned motion prior HuMoR [72] to infill occluded
human motions and directly predict global trajecto-
ries from them. With SLAM (Simultaneous Localiza-
tion and Mapping) [91], world-frame camera poses
can be estimated, allowing local human meshes — re-
covered via HMR - to be transformed into the world
frame [48, 109]. TRAM [99] robustifies and metrifies
SLAM’s camera estimation via masking the dynamic
regions and estimating metric depth via ZoeDepth [4],
which then serve as a reference frame to recover the
global human motion. GVHMR [80] introduces gravity and view-in direction constraints to further
stabilize global human motions. Beyond these offline solutions, several online methods [82, 89]
recurrently reconstruct global human meshes, maintaining consistently low memory and compu-
tation costs as the number of input frames increases. However, even excluding the SLAM step,
most of these approaches still depend on multiple off-the-shelf estimators — such as human detec-
tion [48, 80, 82, 99, 109, 110], tracking [48, 80, 82, 99, 109, 110], segmentation [99], 2D keypoint
detection [48, 80, 82, 109, 110], optical flow [89], camera-frame HMR [48, 99, 109, 110], and etc.
Synchronization barriers between these branches often lead to cumulative errors and high computa-
tional overhead. In contrast, Human3R is an all-in-one model that not only online recovers human
motions and root trajectories in the world frame, but also simultaneously reconstructs the surrounding
3D scene and estimates camera motions — an versatile framework not explored in prior works.
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Figure 3: Multi-stage vs. One-stage.

Human-Scene Reconstruction. Existing methods for joint human-scene 3D reconstruction typically
perform global optimization over camera poses, pre-reconstructed scenes [24, 51, 79, 98] (please
checkout related work about generic 3D reconstruction in Sec. B of Sup.Mat.), and SMPL mesh
parameters inferred from multi-view images [56, 66], often regularized by learned motion priors [2,
53, 115]. Recently, optimization-free approaches have emerged: HAMSt3R [74], for example,
jointly reconstructs the scene and DensePose [32] from multi-view images in a feed-forward manner,
then fits SMPL meshes to the DensePose outputs. The most relevant work, JOSH3R [53], jointly
reconstructs scene and human meshes from monocular videos with dynamic humans, but depends
on camera-frame human meshes, detection, segmentation, and tracking, limiting scalability and
efficiency. We eliminate all these dependencies, resulting in a lightweight yet unified model that
directly predicts metric-scale dense scenes, global human motions, and camera poses from monocular
video in a single forward pass. This unified approach distinguishes our method from previous works
and opens up new possibilities for real-time applications in humanoid policy learning, autonomous
navigation, and human-robot interaction.
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3 METHODS

Our approach operates on a continuous stream of images in an online manner. At each timestep
t, given an input image I, € RW>*H*3 our goal is to estimate: 1) a set of N human meshes
{M? € RV*3}N | in the world coordinate system, where each M7 is parameterized by the
SMPL-X body model with V' = 10,475 vertices and K = 54 joints; 2) the camera extrinsic pose
T, € R3**4, and intrinsic C; € R3*3; 3) the canonical point cloud X, € RW>*#*3_Qur feedforward
inference operates online in real time. We first introduce preliminaries of the 3D human parametric
model and the 4D reconstruction foundation model CUT3R [97] in Section 3.1. Then, in Section 3.2,
we describe our proposed Human3R, which fine-tunes CUT3R to regress SMPL-X parameters for
multiple 3D human bodies.

3.1 PRELIMINARIES

Human Mesh Representation — SMPL-X [64]. We represent the 3D human body with the
SMPL-X [54, 64], which is a low-dimensional parametric model of the human body mesh. Given the
parameters of the local human pose (relative axis-angle rotations) 8 € R52*3, body shape 3 € R19,
facial expression a € R'?, and global human root transformation P = [R | t] € SE(3) parametrized
by global orientation R € SO(3) and global translation t € R?, it outputs an expressive 3D human
mesh M? € RV >3, with V = 10,475 vertices. For brevity, we omit the timestep subscript ¢ and the
id superscript n, as M} — M:

M = SMPL-X(6, 3, o, P)

P =TP“" M
where the global human root transformation P, in the world frame, is decomposed into the camera
pose T and the local root transformation P¢*™ in the camera frame.

4D Reconstruction Foundation Model — CUT3R [97]. To overcome the scarcity of world-grounded
4D human-scene datasets, we exploit the 4D reconstruction foundation model CUT3R [97], which is
4D-aware, and encodes rich 4D priors of real-world dynamics, including both scene (everywhere) and
human (everyone), learned from large-scale 3D point cloud datasets. However, instead of explicitly
separating the unstructured point clouds of humans from the scene, Human3R directly reads out
global human bodies.

CUT3R performs recurrent reconstruction of metric-scale point maps (pixel-aligned point clouds
in the world coordinate system) and camera poses in an online fashion, maintaining a fixed-size
memory state that encodes everything that camera captures. This state enables the retrieval of past
observations, while being continuously updated with new observations. Specifically, to transform a
current image I, into pixel-aligned point maps, the input image is encoded into a set of image tokens
F, € R("*®)x¢ through the ViT image tokenizer [23]: F; = Encoder(I;). The image tokens then
interact with the state in the following formulation:

[F},z;],S; = Decoders([Fy,z],S;—1) 2)

where the init state representation is represented as a set of tokens Sy € R768%768 which are learnable
parameters and are shared by all scenes. As the set of image tokens F is fed into the decoder, the
previous state S;_; is updated with new observations to produce an updated state S;, which encodes
the spatial and temporal history of the scene, namely “context”. Then, through the decoder, the
image token F'; and camera token z;, attend with the context in current state S;, will be refined as
F; and z;. The camera token, designed to capture the image-level ego motion related to the scene,
is prepended to the image tokens and is initialized as a learnable parameter z. This bidirectional
state-token interaction is implemented using two interconnected transformer decoders [98, 101, 102].

After the state-token interaction, the corresponding pixel-aligned metric scale (i.e., meters) 3D
pointmaps in the camera and world coordinate systems are extracted via dense prediction head [70]:
X6am — Headeam (F}), XM = Headyona(F}, z,). The camera pose T; is then regressed from
camera tokens through an MLP network: T; = Headpose(2;), and the camera intrinsic C; is solved
using Weiszfeld [68] algorithms with predicted pointmaps, respectively.
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Figure 4: Method Overview. Human3R enables online human-scene reconstruction from video streams. Each frame is encoded into image
tokens, with patch-level detection. Each detected head token, concatenated with a human prior token from Multi-HMR [3] ViT-DINO feature, is
projected into a human prompt. The human prompts serve as discriminative human-ID queries for the decoder: they self-attend with image
tokens to aggregate spatial whole-body information and cross-attend with the scene state to retrieve temporally consistent human tokens within
the 3D scene context. Only human-related layers are fine-tuned, other parameters remain frozen and are initialized from CUT3R [97].

3.2 HuMAN3R

One-stage Global Human-Scene Reconstruction. To preserve the rich 4D priors encoded by
CUT3R, we adopt parameter-efficient visual prompt tuning (VPT) [35] for fine-tuning. Specifically,
we introduce a small set of trainable parameters — prepended as visual prompts into the input space —
to enable the readout of global human meshes, while keeping the entire CUT3R backbone frozen.

Unlike standard VPT, where additional parameters are ran- |mage token

domly initialized learnable tokens, we instead detect human ] _. Head heatmap
head tokens and transform them into human prompts using % <

learnable projection layers. Specifically, we follow previous ] —’ Human mask
work [3] to detect the human head (defined by the head joint of Figure 5: Detection and Segmentation.
SMPL-X model) as the primary keypoint of human. For each

patch index (i,5) € {1,...,h} x {1,...,w}, we predict whether the patch u®/ contains the primary

keypoint by computing a confidence score from the associated image feature token'FZVj € R¢ using
an MLP followed by a sigmoid activation o(-), formulated as 5"/ = ¢ (MLPjcaa(F*7)). We apply a
threshold 7 on 5™ to collect detected head token indexes, denoted as {u*J | s > T}n. We then
predict the human mesh parameters Y, = {(6, 3, o, P*“™), },, for all people with detected head
tokens F}* = {F}’ | (4,7) € {u;},} in parallel:

Ht = Heﬂdpr(vjcc\ion(F‘il)

[F},z;, H}],S; = Decoders([Fy,z, Hy],S;—1) 3)
Y = ”C“dhum;m(Hg)

where human prompts H is transformed from detected head tokens F} via the projection MLP, and
the SMPL-X parameters Y are predicted by the human MLP from the refined human token Hj.
H, is inserted into the input space of the decoder. The colors e and e indicate learnable and frozen
parameters, respectively. During fine-tuning, only the human-related MLP layers are updated, while
all other parameters remain frozen. The human prompts serve as discriminative human ID queries:
they self-attend with image tokens to aggregate spatial whole-body information and cross-attend with
the scene state to retrieve temporal SMPL-X mesh parameters within the 3D scene context.

Human Prior. In practice, we found that CUT3R, trained on large-scale scene-centric datasets, lacks
detailed human priors, leading to suboptimal performance in reconstructing fine-grained human poses
and shapes. Thus, we enhance the head tokens F" with extra human-specific features from a human-
centric image encoder. Particularly, we use another image tokenizer, the Multi-HMR [3] ViT image
encoder, denoted as Encodergygr, which fully fine-tuned the pretrained DINO [10, 60] on human-
specific datasets. Same as previous index-based query, we still use {u},, to obtain the corresponding
Multi-HMR ViT image tokens Fyvr = Encodergyvr (I), to produce Fiyr = {Fidr | (4,7) €
{u},}, which are subsequently concatenated with CUT3R head tokens F* and translated into human
prompts by the projection MLP as: H = Headrojection (F™ @ Fiiyr ), Where & denotes concatenation
along the channel axis. Notably, Encoderyyg is frozen during training. Concatenating Multi-HMR
and CUT3R head tokens injects detailed human priors for improved body pose and shape prediction.
And with additional training-free designs, Human3R also supports human segmentation and tracking.
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Human Segmentation and Tracking. For segmentation, we predict Optimal Transport
whether each patch (i, j) contains human parts by generating a score Human Human
vector m*J € RU6x16)x1 from the corresponding image token FJ ¢  tokenH; token H; .,

t t+1

R¢. This is achieved by passing F%7 through an MLP, applying a sigmoid Figure 6: Tracking

activation, and then using pixel shuffle [81] to produce a pixel-aligned
dense mask: m*»/ = PixelShuffle (O’ (MLPmask(FiJ))). We perform human tracking by
leveraging the discriminative features encoded in the refined human token H’, which encapsulates
both human identity and human parameters. This enables us to formulate human tracking as a
feature matching problem [77], where tracklet association is achieved by matching the refined
tokens across timesteps. We maintain a human token tracklet [69] indexed by A = {1,..., M}
after each step of the online processing, which allows us to build a memory bank for all observed
humans, and derive soft assignment matrix A € [0,1]"*¥ for current detections indexed by
B ={1,...,N}. To estimate the likelihood of a given tracklet-detection pair, we use the pairwise
L2 distance D, ,, = |[H™ — H" ||, ¥(m,n) € A x B to obtain the cost matrix D € RM*N To

suppress unmatched human tokens, we augment the cost D to D € R(M+1D)x(N+1) py appending a
new row and column dustbin with a threshold, so that unmatched human tokens are explicitly assigned
to it. The assignment with dustbin A can be solved by optimal transport [67] with the Sinkhorn
algorithm [20] to minimize the total cost 3, . Din.n Ay, under the constraints of A 1y = a

and A T1)7,; = b, where a = [1], N]T and b = [1} M]", denote the number of expected
matches for each human token and dustbin in .4 and 5.

Training Strategy. We finetune CUT3R on a synthetic dataset, BEDLAM [5], which is small-
scale yet high-quality, with 6k sequences featuring 3D scene depth, camera poses, and SMPL-X
meshes [64] of multiple persons in the world coordinates. Following CUT3R and MASt3R, we
apply a confidence-aware 3D regression 10ss Lpoinmap t0 the metric-scale pointmaps, as well as a
camera pose 10ss Ly to the ground-truth camera poses. This helps prevent CUT3R from forgetting
the rich spatial and temporal priors learned from large-scale 3D scene datasets. To readout human
from CUT3R, we follow Multi-HMR to minimize a binary cross-entropy 10ss Lgetection ON s, L1
regression losses Lympl to human parameter Y, Lyeqn to explicit human meshes, and reprojection
108S Lieproj.. With our efficient human prompt tuning protocol, Human3R requires just one day of
training on a single NVIDIA 48GB GPU, and still achieves state-of-the-art performance. Please
checkout more training details in Sec. C of Sup.Mat.

Test-Time Sequence Length Adaptation. Trained with sequences of only 4 images, we observe
that performance of Human3R degrades when the inference sequence length exceeds the training
context. This is a common issue for RNN-based methods [9, 14, 95, 104], including CUT3R [97],
where the state tends to forget earlier frames, resulting in significant performance drops as the
number of input views increases. To address this limitation and support longer sequence, we
adopt TTT3R [12], which parameterizes the state S as a fast weight [78] and updates it using
gradient descent: S; = S;_1—:V(S;_1,F¢,z), where V(S;_1, Fy, z) denotes the gradient function
and (; is the learning rate. Intuitively, this Test-Time Training (TTT) [90] procedure adaptively
encodes the current observation into the memory state using a dynamic learning rate, enabling
online adaptation. This approach effectively balances the retention of historical context with the
integration of new observations. We follow TTT3R to use the spatial average of the attention values
as a closed-form update rule for online associative recall in test time, and formulate the state update
as: Sy = S;—1 — B:V(Si—1,Fy, z, H;). Inspired by the correlation between length generalization
and unexplored state distributions [75], we further propose a state reset process: the state is reset
every 100 frames, using the global camera pose as a cue to align the resulting chunks.

4 EXPERIMENTS

We unfold the validation of Human3R and the baselines on human mesh recovery in the camera
coordinates (Sec. 4.1) and the world coordinates (Sec. 4.2) respectively, and then compare our model
with current state-of-the-art genetic 3D reconstruction methods in camera pose estimation and video
depth estimation (Sec. 4.3). We also analyze the components of Human3R in Sec. 4.4.
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3DPW (14) EMDB-1 (24)
Category Method Crop-free Detection-free Intrinsic-free | PA-MPJPE| MPJPE| PVE| | PA-MPJPE| MPIJPE| PVE |
CLIFF [52] X X X 43.0 69.0 81.2 68.3 103.3 123.7
HMR2.0a [31] X X v 44.4 69.8 822 61.5 97.8 120.0
. TokenHMR [25] X X v 44.3 71.0 84.6 55.6 91.7 109.4
Multi-stage
CameraHMR [62] X X v 38.5 62.1 729 43.7 73.0 854
NLF [76] X X X 373 60.3 71.4 41.2 69.6 82.4
PromptHMR [100] v X X 36.6 58.7 69.4 41.0 71.7 84.5
BEV [88] v v v 46.9 78.5 92.3 70.9 112.2 1334
One-stage Multi-HMR [3] v v X 45.9 73.1 87.1 50.1 81.6 95.7
Human3R v v v 4.1 71.2 84.9 48.5 73.9 86.0
Table 1: Evaluation of local human mesh reconstruction on 3DPW [94] and EMDB-1 [39] datasets.
Preprocessed Input (/ = not required) Output EMDB-2 (24) RICH (24)
Category  Method  |Detection Tracking LocalHuman Camera Mask Depth Contact|GlobalHuman CameraPose Scene| WA-MPJPE | W-MPJPE | RTE | |WA-MPJPE | W-MPJPE | RTE |
GLAMR[110] | X 3 X v 7 7 7 v X X 280.8 7266 114 1294 2362 38
SLAHMR [109]| X X X X v v v v X X 326.9 7761 102 132.2 237.1 64
Offfine COIN [48] X X X X v v v v X X 152.8 4073 35 169.5 254.5 -
M GVHMR[s0] | x x X x v v v v x x 111.0 2765 20 788 1263 24
TRAM [99] X X X X x x v v v X 76.4 2224 14 127.8 2380 6.0
JOSH [53] X X X X X X X v v v 68.9 1747 13 89.0 1325 3.0
TRACE [89] 7 7 7 7 7 77 % X X 529.0 17023 177 238.1 9254 6104
online  WHAM[82] X X X X v v v v X X 135.6 3548 60 108.4 196.1 4.5
: JOSH3R [53] X X X 2 S v v v 220.0 6617 13.1 - - -
Human3R v v v [ v v v 1122 2679 22 110.0 1849 33

Table 2: Evaluation of global human motion estimation on EMDB-2 [39] and RICH [33] datasets.

4.1 LocAL HUMAN MESH RECONSTRUCTION

We evaluate human pose and shape reconstruction in camera coordinates on 3DPW [94] and EMDB
(subset 1) [39], and follow the commonly used local human mesh reconstruction metrics as prior
works [3, 100]: mean per-joint position error (MPJPE), Procrustes-aligned per-joint position error
(PA-MPIJPE), and per-vertex error (PVE) measured in millimeters (mm).

We compare with both multi-stage and one-stage leading methods in Tab. 1. Most multi-stage meth-
ods rely on human detection and cropping, processing each detected person individually. Without
additional cropping, PromptHMR [100] takes the full image as input and prompt it with bounding-box
prompts, and achieves strong performance. Among one-stage models, Multi-HMR [3] eliminates the
need for off-the-shelf human detectors, but still requires ground-truth camera intrinsics. BEV [88]
removes the dependency on ground-truth intrinsics, aligning with our experimental setting. Our
approach surpasses these methods across all metrics, demonstrating substantial performance improve-
ments (10% improvement on MPJPE and PVE on EMDB-1), which we attribute to the spatiotemporal
awareness provided by CUT3R as a generic 4D reconstruction model.

4.2 GLOBAL HUMAN MOTION ESTIMATION

We evaluate motion and trajectory estimation accuracy in world coordinates on EMDB (subset 2) [39]
and RICH [33], both feature long sequences with ground-truth global human trajectories and meshes.
Following previous work [82, 99], we divide each sequence into 100-frame segments and evaluate
3D joint errors using two metrics: W-MPJPE, which aligns the first two frames, and WA-MPJPE,
which aligns the entire segment. Both metrics are reported in millimeters (mm). To comprehensively
assess trajectory accuracy over long sequences, we additionally report the root translation error (RTE,
in %) after rigid alignment (without scaling), normalized by the total displacement.

We compare with both offline and online methods in Tab. 2. Given multiple offline pre-cached
conditions, GVHMR [80] and JOSH [53] respectively achieve strong performance on sequences
with static cameras (RICH) and long human trajectories (EMDB-2). JOSH3R [53], trained with
multi-stage pseudo ground truth from JOSH, removes the need for pre-cached camera poses, depth,
contact, and iterative refinement. It enables online prediction of global human trajectories, scene
points, and camera poses, but with a 2x drop in accuracy compared to WHAM and still requires
precomputed human detection, segmentation, and meshes in camera coordinates. TRACE [89]
takes only RGB video as input, matching our experimental setting, but outputs only global human
meshes. In contrast, our method also reconstructs scene geometry and estimates camera poses. In
summary, Human3R jointly reconstructs multiple human meshes and trajectories in world space,
scene geometry, and camera poses, achieving notable gains (20% lower W-MPJPE and 60% lower
RTE against WHAM on EMDB-2), while enabling online inference and end-to-end training. We
visualize the global human motion estimation within the dense scene, together with the predicted
camera trajectory, in Fig. 7.
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Figure 7: Qualitative 4D human-scene reconstruction results. Given video captured from a single camera, Human3R performs online
reasoning about global human motion, the surrounding environment, and camera poses all at once. R Check our website for video results.
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(a) Camera pose estimation. (b) Video depth estimation in metric scale.

Figure 8: Evaluation of generic 3D reconstruction with camera pose estimation on TUM-D [86] and video depth estimation on Bonn [61].

4.3 GENERIC 3D RECONSTRUCTION

Camera Pose Estimation. Following prior works [12, 97], we evaluate camera pose estimation
accuracy on TUM dynamics [86] dataset with dynamic humans. We report the Absolute Translation
Error (ATE) after applying the Sim(3) alignment [92] on the estimated camera trajectory to the ground-
truth. We compare with current leading 3D reconstruction foundation models [12, 96, 97, 104, 117].

We include VGGT, an offline method utilizing full attention, as an upper bound for online approaches,
since it retains complete historical context without forgetting. VGGT and StreamVGGT rely on full
attention, making them relatively slow and prone to running out of memory (OOM). In contrast,
CUT3R maintains consistently low GPU usage and enables online inference, but struggles to remem-
ber long sequences, resulting in less accurate pose estimation. TTT3R [12] introduces a closed-form
state transition rule as a training-free intervention to mitigate the catastrophic forgetting observed in
CUT3R. As shown in Fig. 8a, integrating TTT3R with Human3R leads to further improvements in
camera pose estimation after human prompt tuning compared to the original TTT3R.

Video Depth Estimation. Following common practice [12, 97], we evaluate video depth estimation
on Bonn [61] datasets with dynamic humans. We use Absolute Relative Error and 6<1.25 (percentage
of predicted depths within a 1.25-factor of true depth) as metrics. Metric scale video depth estimation
evaluates per-frame depth quality and inter-frame depth consistency without per-sequence scale
or shift alignment, which measures the absolute depth accuracy. Fig. 8b presents the quantitative
comparison between our method and the online baselines, and still Human3R+TTT3R achieves more
acccurate depth estimation over naive TTT3R. We do not plot VGGT [96] and StreamVGGT [117]
for the evaluation of the metric depth, as they can only predict the relative depth without metric scale.

By integrating TTT3R and fine-tuning with human prompt tuning on human-scene 4D datasets, our
approach achieves SOTA human mesh recovery and also slightly improves generic 3D reconstruction.
This highlights the mutual benefits of jointly reasoning about humans and scenes.
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(a) Naive ®Ours -

Figure 9: Comparison with naive CUT3R+Multi-HMR combination in global human motion, 3D scene reconstruction, and camera poses
estimation. The colors e and e indicates and Ground-truth, respectively. Q See Fig. 12 in Sup.Mat. for a zoomed-in visualization.

4.4  ANALYSIS

2500
1) Human3R benefits from the 3D awareness of
CUT3R. We use the Mean Root Position Error
(MRPE) [3] between the predicted and ground-truth pelvis
locations to evaluate the quality of spatial location esti-
mation. As shown in Fig. 10, Multi-HMR performance
varies when processing images at different aspect ratios,
while Human3R performs consistently well without requir-
ing camera intrinsics. The metric-scale 3D scene context T
A . . . . i+ + o+ o+ ’a +
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. Figure 10: Evaluation of intrinsic robustness. Multi-
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humans from intrinsic-agnostic internet images. See more are sensitive to image aspect ratios, Human3R performs
in-the-wild examples onour website consistently well without camera intrinsics.
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2) Human3R benefits from the human awareness of Ablations WA-MPJPE | W-MPIPE | RTE |
Multi-HMR. To enhance the details of reconstructed hu-  Human3R w/o Prior 212 8084 2.2
man pose and shape, we introduce Multi-HMR [3] ViT  Human3Rw/ViE-S/672) 1299 342 22
. Human3R w/ ViT-B/672 122.1 292.9 2.2

DINO encodaer that ﬁne-tunec} on human-specific datasets .03 w itLe72| 1136 017 22
as human prior. As shown in Tab. 3, Human3R recon-  Human3R w/ViT-L/896|  112.2 2679 22
structs more fine-grained human pose and shape when  Naive w/o TTT3R 455.4 1263 143
o AN . Naive w/ TTT3R 4013 1739 122
injecting human priors in better detail. Human3R w/o TTT3R 1243 203 25
Human3R w/ TTT3R 1122 2679 22

3) Human3R takes the best of both worlds. Human3R Table 3: Ablation of human prior and naive baselines
predicts better camera poses and scenes than CUT3R  in global human motion on EMDB-2 dataset, using differ-
(Fig. 8), better local humans than Multi-HMR (Tab. 1 and  ent Multi-HMR VIT-DINO encoders and a simple com-
Fie. 10 db lobal h than th . bi bination of Multi-HMR and CUT3R as the naive base-

1g. )’ an etter global humans than thé naive combi- ;e Q Please check more detailed analyses in Sec. A.1,

nations of Multi-HMR and CUT3R (Tab. 3), all-at-once.  Sec. A.2, and Sec. A.3 of Sup.Mat.

5 CONCLUSION

We presented Human3R, a one-stage method for 4D human-scene reconstruction, providing a feasible
strategy for both efficient finetuning and real-time inference. Our method demonstrates competitive
or state-of-the-art performance in both human motion recovery and general 3D reconstruction
benchmark, and generalizes to casually captured videos.

Limitations & Future Work. Human3R represents an important first step towards feed-forward
3D human and scene reconstruction, but several limitations remain. First, our method relies on the
head as the discriminative keypoint for detecting humans, which leads to failures when the head
is not visible. Incorporating pixel-aligned body point localizers [40, 76] could mitigate this issue.
Second, we currently represent humans using proxy SMPL meshes that do not model clothing or
appearance. Extending the framework with 3DGS anchored on SMPL would enable richer, more
holistic reconstructions. Third, while Human3R is designed as an online method for real-time
applications, it can also serve as an effective initialization for optimization-based approaches [53] to
improve accuracy at the cost of additional computation. Beyond these limitations, Human3R opens
avenues for broader applications. Although our focus is on reconstructing humans from monocular
videos, the underlying principles can extend to other dynamic entities. By leveraging spatial and
temporal cues, the framework could be adapted to reconstruct animals, vehicles, or other moving
objects with full 6D poses (see limitations Sec. D of Sup.Mat.). Such extensions would enable
applications in wildlife monitoring, traffic analysis, human-object interaction, and robotics.
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Figure 11: Evaluation of intrinsic robustness in human mesh reconstruction. Multi-HMR [3] performance varies when processing images at
different ratios, while Human3R performs consistently well without requiring camera intrinsics, benefiting from the 3D awareness of CUT3R.

Human Mesh Reconstruction Global Human Motion
3DPW (14) EMDB-1 (24) EMDB-2 (24) RICH (24)
Ablations PA-MPJPE | MPIJPE | PVE | |PA-MPJPE | MPJPE | PVE ||WA-MPIPE | W-MPJPE | RTE ||WA-MPJPE | W-MPJPE | RTE ||FPS 1
Human3R w/o Prior 102.1 1735 2004 145.8 214 252.7 221.2 808.4 22 226 399.5 3.4 18
Human3R w/ ViT-S/672 56.1 87.8  103.1 66.9 93.6 1065 129.9 314.2 22 131.8 208.3 33 15
Human3R w/ ViT-B/672 493 79.6 943 56.6 84.1 96.4 122.1 292.9 22 119.2 188.3 33 11
Human3R w/ ViT-L/672 48.5 83.1 96.7 54.1 829  95.0 113.6 291.7 22 110.3 185.0 33 7
Human3R w/ ViT-L/896 4.1 712 849 48.5 739  86.0 1122 267.9 22 110.0 184.9 33 5

Table 4: Ablation of human prior in human mesh reconstruction and global human motion estimation. To enhance the details of reconstructed
human pose and shape, we introduce Multi-HMR [3] ViT DINO encoder that fine-tuned on human-specific datasets as human prior.

A ANALYSIS

A.1 HUMAN3R BENEFITS FROM THE 3D AWARENESS OF CUT3R

As shown in Fig. 11, Multi-HMR’s performance varies with image aspect ratios, whereas Human3R
remains consistently strong without requiring camera intrinsics. Specifically, Multi-HMR w/ GT
intrinsics is substantially more robust than Multi-HMR w/o GT intrinsics. This demonstrates that
integrating camera intrinsics helps recover and place human 3D meshes more accurately in the
scene [3]. However, training with ground-truth intrinsics and testing without them—following
the fixed 60° field-of-view (FOV) assumption used in previous work [3, 87, 88]—induces an out-
of-distribution (OOD) shift and markedly degrades performance. Conditioning on ground-truth
intrinsics improves person-centered reconstruction metrics: mean per-joint position error (MPJPE;
root-centered), Procrustes-aligned MPJPE (PA-MPIJPE; root-centered and rotation-aligned), and
per-vertex error (PVE; root-centered). In contrast, the Mean Root Position Error (MRPE) [3], which
evaluates absolute pelvis location in metric scale (millimeters), is notably more sensitive to changes
in image aspect ratio. These findings underscore the benefit of using CUT3R [97] as a 4D foundation
model: leveraging metric-scale scene context enhances the intrinsic robustness of Human3R and
enables coherent recovery of 3D humans from intrinsic-agnostic in-the-wild images.

A.2 HUMAN3R BENEFITS FROM THE HUMAN AWARENESS OF MULTI-HMR

To enhance fine-grained details in reconstructed human pose and shape, we incorporate the Multi-
HMR [3] ViT DINO encoder—fine-tuned on human-centric datasets—as a human prior. As shown in
Tab. 4, injecting this prior enables Human3R to recover more detailed human pose and shape. We
ablate Human3R without the prior (Human3R w/o Prior) and evaluate the impact of input image
resolution (672 and 896) across Multi-HMR ViT DINO backbone sizes (ViT-S, ViT-B, ViT-L).
Increasing the input resolution and model size consistently improves performance, at the cost of
higher inference time, as reported on the right of Tab. 4 in frames per second (FPS). For global
human motion estimation, a ViT-S backbone with 672 x 672 inputs offers a good performance—speed
trade-off (approximately 100 WA-MPJPE and 2 RTE at 15 FPS). Higher resolutions and larger
backbones can be more beneficial for detailed human-mesh reconstruction. This is expected, since
fine details—such as facial expressions and hand poses—are better captured at higher resolution and
by larger models with richer priors and higher-dimensional features. The largest backbone (ViT-L)
at 896 x 896 runs at 5 FPS—without extra compression or quantization efforts—while achieving
accuracy even competitive with multi-stage methods.
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(b) Ours

Figure 12: Comparison with naive CUT3R+Multi-HMR combination in global human motion, 3D scene reconstruction, and camera poses
estimation. The colors ¢ and e indicates Prediction and Ground-truth, respectively.

A.3 HUMAN3R TAKES THE BEST OF BOTH WORLDS

Human3R predicts camera poses and scenes more accurately than CUT3R (Fig. 8), reconstructs local
human details better than Multi-HMR (Tab. 1, Fig. 10), and outperforms naive combinations of Multi-
HMR and CUT3R on global human reconstruction (Tab. 3)—all at once. We visualize reconstruction
results in Fig. 12 and Fig. 14. Beyond offering a unified model that jointly reasons about humans,
the scene, and the camera in an online manner, Human3R runs on streaming video in real time (15
FPS), eliminating the need for separate off-the-shelf components and iterative refinement. Crucially,
this efficiency does not come at the expense of accuracy. With human prompt tuning, our model
reconstructs multiple people in a single forward pass, while implicitly reasoning about human-scene
interaction (more examples on Fig. 15 and Fig. 16). Trained with only one 48G GPU for one day, it
delivers substantially improved reconstructions than naive combinations of Multi-HMR and CUT3R
and achieves state-of-the-art performance over task-specific baselines.

B RELATED WORKS

B.1 GENERIC 3D RECONSTRUCTION.

3D reconstruction from RGB images has long been a fundamental challenge in computer vision.
Structure-from-Motion (SfM) [1, 79, 84, 85] and SLAM [22, 26, 51, 57, 58, 114] are foundational
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approaches for simultaneously recovering 3D structure and camera poses. However, these methods
often struggle in scenarios with small camera parallax, textureless surface, or dynamic elements,
like the moving humans, and typically produce only sparse point clouds, which constrains detailed
scene understanding. Moreover, their optimization-based pipelines are computationally intensive and
slow, making them less suitable for real-time applications. A major breakthrough in feedforward 3D
reconstruction was achieved by DUSt3R [98], which introduced an end-to-end approach that directly
predicts two pixel-aligned pointmaps [7, 8, 83] from an image pair. Subsequent methods [96, 107]
extended this framework to handle multiview inputs using large global attention [93], achieving state-
of-the-art results in 3D point and camera pose reconstruction. However, these approaches suffer from
quadratic growth in computational and memory costs, making them inherently offline: inference must
be re-run over all images whenever a new frame is added. To enable online reconstruction, several
works [9, 14, 95, 104, 117] introduce memory mechanisms that compress and retain information from
past frames, allowing for incremental 3D reasoning. However, since these methods are not trained
on dynamic datasets [113] or do not explicitly disentangle static scenes from dynamic humans [11],
their performance degrades when processing videos with moving people. A promising advance is
the recurrent deep 4D reconstruction foundation model, CUT3R [97], which is trained on both static
and dynamic datasets. CUT3R achieves feed-forward 4D reconstruction by maintaining a persistent
internal state that encodes the spatiotemporal history of both scenes and humans, incrementally
updating this state as new observations arrive. This recurrent formulation enables efficient processing
of long sequences with linear computational complexity, while keeping inference memory usage
consistently low. Building on this success, we leverage the spatiotemporal priors learned by CUT3R
to enable online holistic 4D reconstruction, reasoning jointly not only the 3D scene and camera poses,
but also the multi-person human body mesh sequences (parameterized with SMPL-X [64]), in the
world frame, at a real-time inference speed.

C TRAINING DETAILS

We freeze all weights of pretrained CUT3R and Multi-HMR encoder, and fine-tune the human-
related modules (i.e., Headprojection, Headhuman, MLPheag and MLP ) on BEDLAM [5]. This
dataset provides 3D scene depth and SMPL-X meshes, with 1-10 people per scene, captured from
diverse known camera viewpoints. Following CUT3R, we exclude BEDLAM sequences where the
environment is represented by a panoramic HDRI image, resulting in 5,000 sequences for training
and 1,000 for validation, with each sequence averaging 30 frames. For each iteration, we randomly
sample 4 frames from each sequence and train Human3R with a batch size of 8, using variable aspect
ratios and resizing images so that the longer side is 512 pixels. All MLP networks are implemented
as 2 linear layers with GELU activation [34]. Each human prompt, a 768-dimensional vector, is
concatenated with the camera and image tokens along the token dimension. We use the AdamW
optimizer [55] with an initial learning rate of 1 x 10—, employing linear warmup followed by cosine
decay. We train our model on a single NVIDIA 48GB GPU within one day.

D FAILURE CASES & FUTURE WORK

Human3R implicitly models human interactions (Fig. 13,
left) but does not yet resolve them (Fig. 13, middle), and it
has not matched strong offline methods (e.g., JOSH [53])
in reconstruction accuracy. Iterative optimization—though
slower and more memory-intensive—better constrains in-
terpenetration, physics, and contacts. Human3R can there-
fore serve as an effective initialization for applications
that demand high accuracy. While Human3R shows a
clear boost in real-time human-scene reconstruction, its
design space remains largely unexplored. Fig. 13 (right)

(a) Example (b) Interaction (c) Dynamic object
N . ; > Figure 13: Failure cases. (a) Successful human-human
highlights a vast opportunity to develop more expressive interaction; (b) Interaction failures with human-human

architectures for handling human-object interactions and ~ nterpenetration; (c) Inability to model dynamic objects.
moving toward everything. We hope that this work will motivate future research to revisit the task of
dynamic human, animal, and object from a real-time, online, end-to-end perspective.
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Figure 14: Qualitative comparison in global human motion, 3D scene reconstruction, and camera poses estimation of e our prediction against
e ground-truth on EMDB dataset (subset 1) [39].

E USE OF LARGE LANGUAGE MODELS

We used a large language model to assist with copy editing—grammar checking, wording suggestions,
and minor style and clarity improvements—after the scientific content, methodology, analyses, and
conclusions had been written by the authors.
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Figure 15: Qualitative 4D human-scene reconstruction results on the 3DPW dataset [94]. Given video captured from a moving camera,
Human3R performs online reasoning about global human motion, the surrounding environment, and camera poses all at once.
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Figure 16: Qualitative 4D human-scene reconstruction results on the EMDB dataset [39]. Given video captured from a single camera,
Human3R performs online reasoning about global human motion, the surrounding environment, and camera poses all at once.
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